วันเสาร์ที่ 14 กันยายน พ.ศ. 2556

วิดีโอเกี่ยวกับการกำเนิดสิ่งมีชีวิต

Stanley Miller-Urey experiment 'Origin of Life Experiment' -Debunked


El origen de la vida - Stanley Miller / Origin of Life


In memory of Stanley Miller


STANLEY MILLER


Origin of life: Stanley Miller experiment


The Origin of Life - Scientific Evidence

ข้อสรุปของสมมติฐานชีวิตจากอวกาศ

ข้อสรุปของสมมติฐานชีวิตจากอวกาศ



กล่าวโดยสรุป สมมติฐานชีวิตจากอวกาศคือ สิ่งมีชีวิตในรูปแบบง่ายๆ นั้นบังเกิดขึ้นในอวกาศ ล่องลอยอยู่ในเมฆหมอก interstellar coulds ซึ่งเป็นฉากหลังของกาแล็กซี่ พาตัวเองติดไปกับดาวหาง สะเก็ดดาว เทหวัตถุต่างๆ ที่พร้อมจะตกลงสู่ดาวเคราะห์ หากมีสภาพแวดล้อมที่เหมาะสม (มีแหล่งน้ำ สภาพอากาศ อุณหภูมิเหมาะสม องค์ประกอบทางเคมีธรรมชาติ มีความมั่นคงเพียงพอ) ก็วิวัฒน์เป็นสิ่งมีชีวิตที่ซับซ้อนต่อไปในดาวเคราะห์นั้นๆ

แนวคิดทฤษฎีที่ว่าสิ่งมีชีวิตมาจากอวกาศนอกโลกนั้นมีข้อกังขา 2 ประการหลักๆ ประการที่หนึ่ง มันเป็นการตอบคำถามแบบกำปั้นทุบดิน ผลักภาระ โยนความรับผิดชอบไปยังที่อื่น เมื่อมีผู้ตั้งคำถามว่า สิ่งมีชีวิตบนโลกกำเนิดขึ้นได้อย่างไร? คนที่ยึดถือตามแนวคิดนี้ก็ตอบว่า สิ่งมีชีวิตมีต้นกำเนิดมาจากนอกโลกซึ่งไม่ได้ช่วยให้เรากระจ่างในคำถามขึ้นเท่าไรนัก ประการที่สอง บรรดานักวิทยาศาสตร์ที่ผู้คนต่างให้ความเคารพนับถือพากันตื่นเต้นกับแนวคิดดังกล่าวในระดับที่บางคนมองว่าขาดการใช้วิจารณญาณอย่างรอบคอบ ฟรานซิส คริก นักวิทยาศาสตร์รางวัลโนเบลเคยพูดกับเพื่อนร่วมงานว่า โลกจะต้องถูกมนุษย์ต่างดาวผู้มีสติปัญญาสูงส่งหว่านเมล็ดพันธุ์แห่งชีวิตไว้อย่างแน่นอนจนมีผู้วิจารณ์ว่า อยู่สุดขอบของความน่าเคารพนับถือทางวิทยาศาสตร์ส่วนเฟรด ฮอยล์กับจันทรา วิกรมสิงห์ (Chandra Wickramasighe) บั่นทอนความน่าเชื่อถือของทฤษฎีนี้ลงไปอีกว่า อวกาศนอกโลกไม่เพียงแต่ให้ชีวิตแก่เราเท่านั้น แต่ยังนำโรคภัยไข้เจ็บมากมายมาสู่เราด้วยเช่น ไข้หวัดใหญ่และกาฬโรค

ไม่ว่าอย่างไรก็ตาม คำถามที่ว่า กำเนิดของสิ่งมีชีวิตมาจากไหน นั้นก็ยังไม่สรุปได้ การเชื่ออย่างฟันธงไปทางฝั่งใดฝั่งหนึ่งนั้นเท่ากับการสรุปจากความไม่รู้ (Argumentum ad ignorantiam) ไม่ว่าสิ่งมีชีวิตจะบังเกิดขึ้นเองบนโลกนี้ มาจากที่อื่นในอวกาศ หรือถูกสร้างขึ้นจากสิ่งมีชีวิตทรงปัญญา ก็ยังคงเป็นปริศนาให้เราค้นคว้าต่อไป



ทฤษฎีแพนสเปอร์เมีย (Panspermia theory)

ทฤษฎีแพนสเปอร์เมีย (Panspermia theory)



ทฤษฎีแพนสเปอร์เมีย (Panspermia theory) คือทฤษฎีที่กล่าวว่ากำเนิดชีวิตมาจากต่างดาว ถูกเสนอเป็นครั้งแรกโดยนักฟิสิกส์ชาวอังกฤษ เฟรด ฮอยล์ (Fred Hoyle)(10) ว่า สารอินทรีย์ที่จำเป็นสำหรับสิ่งมีชีวิตนั้นมีอยู่ทั่วไปนอกโลก แพร่กระจายไปในห้วงอวกาศและอาจติดมากับเทหวัตถุที่ตกลงสู่โลก ทฤษฎีนี้มีหลักฐาน (evidence) สนับสนุนค่อนข้างมาก

ตัวอย่างเช่น ปี 1969 อุกกาบาตเมอร์ซิสันตกลง ณ ประเทศออสเตรเลีย อุกกาบาตลูกดังกล่าวมีอายุ 4.5 พันล้านปี และมีกรดอะมิโน 70 กว่าชนิดกระจายอยู่ทั่วไปหมด ในจำนวนดังกล่าวมี 8 ชนิดที่มีความสัมพันธ์กับโปรตีนที่พบบนโลก ในปลายปี 2001 คณะนักวิทยาศาสตร์ยังตรวจพบน้ำตาล polyol ในอุกกาบาตเมอร์ซิสันอีกด้วย

หลังจากนั้นก็มีการค้นพบสารอินทรีย์ในอุกกาบาตชิ้นเล็กชิ้นน้อยทั่วโลกจำนวนมาก ในแต่ละวัน อุกกาบาตและสะเก็ดดาว จำนวนมากตกลงสู่โลก สิ่งที่มาด้วยคือ คาร์บอนโมเลกุล Polycyclic aromatic hydrocarbons (PAHs) ในรูปอนุภาคฝุ่นอวกาศปริมาณตกสู่โลก นับรวมมีน้ำหนักหลายสิบตัน โดยตกกระจัดกระจายทั่วไป เช่นในมหาสมุทร ป่าทึบ ทะเลทราย หรือขั้วโลก แม้กระทั้งในเมือง

อุกกาบาตเหล่านี้เป็นหลักฐานยืนยันว่าจักรวาลอุดมไปด้วยสารอินทรีย์ สารอินทรีย์จำนวนมากกระจัดกระจายไปทั่วทุกหนทุกแห่ง-สารที่นักวิทยาศาสตร์เคยเชื่อกันว่าบังเกิดเฉพาะบนโลก-ที่อยู่อาศัยเดียวของสิ่งมีชีวิต มีการคาดการณ์ว่าดาวหางมีองค์ประกอบเป็นสารอินทรีย์จำนวนมากเช่นกัน หากสารอินทรีย์เหล่านี้ตกลงสู่โลกในยุคแรกๆ ในปริมาณที่มากพอ โลกก็มีสารประกอบพื้นฐานเพียงพอในการสร้างสิ่งมีชีวิต



นอกจากทฤษฎีแพนสเปอร์เมีย ยังมีผู้เสนอว่าสิ่งที่มาจากอวกาศอาจจะไม่ใช่แค่สารอินทรีย์พื้นฐานแต่เป็นโมเลกุลที่มีความซับซ้อนมากอย่างเช่น สารพันธุกรรมหรือกระทั่งโครงสร้างในรูปแบบเซลล์สิ่งมีชีวิต ซึ่งก็ไม่ใช่คำกล่าวอ้างเลื่อนลอยเสียด้วย ปี
1996 มีการค้นพบจุลินทรีย์ที่ติดมากับอุกกาบาตซึ่งเชื่อว่าเป็นชิ้นส่วนหนึ่งของดาวอังคารเมื่อประมาณ 16 ล้านปีที่แล้วและตกลงสู่ทวีปแอนตาร์กติกาเมื่อ 13,000 ปีก่อน ปัจจุบันนักชีวดาราศาสตร์แห่งนาซ่าก็ยังคงทำการวิจัย ศึกษาตัวอย่างจากอวกาศอย่างต่อเนื่องถึงรูปแบบสิ่งมีชีวิตง่ายๆ (สิ่งมีชีวิตจำพวกจุลินทรีย์) บนดาวอังคารที่คาดว่าน่าจะเคยมีสิ่งมีชีวิตอยู่อย่างต่อเนื่อง


โลกของ RNA

โลกของ RNA

นักวิทยาศาสตร์เชื่อโลกในยุคแรกๆ เป็นโลกของกรดนิวคลีอิก กรดนิวคลีอิกจำนวนมากและหลากหลายกำเนิดขึ้นเองภายใต้สภาพแวดล้อมที่เหมาะสม บรรยากาศโลกในยุคดึกดำบรรพ์นั้น ปัญหาสำคัญคือ กรดนิวคลีอิกแรกเริ่มของโลกนี้เป็นประเภทใดระหว่าง RNA ซึ่งเป็นโมเลกุลสายเดี่ยวที่ไม่ยาวและไม่สลับซับซ้อนมากนัก หรือจะเป็น DNA ซึ่งเป็นโมเลกุลสายเกลียวคู่ซึ่งมีความยาวและความสลับซับซ้อนมากกว่า




ในอดีตนั้น จากความรู้ทางชีวเคมีและอณูชีววิทยา เรารู้ว่า DNA นั้นเป็นแหล่งรวมข้อมูลทางพันธุกรรมในทุกสิ่งมีชีวิตแต่ไม่มีคุณสมบัติเป็นตัวเร่งปฏิกิริยาเคมี ในขณะที่นักวิทยาศาสตร์ยังไม่ทราบบทบาททางชีวภาพของ RNA มากนักนิกจากการเป็นตัวกลางของการส่งต่อข้อมูลจาก DNA ไปยังโปรตีน จนกระทั่งประมาณปี 1970 มีนักวิทยาศาสตร์ค้นพบคุณสมบัติในการเร่งปฏิกิริยาเคมีของ RNA โดยตั้งชื่อว่า ribozyme ซึ่งสามารถตัดโมเลกุลของตนเองหรือ RNA ตัวอื่นได้ การค้นพบดังกล่าวนี้นำไปสู่ทฤษฎีที่ว่า RNA ที่อุบัติขึ้นมาในยุคแรกน่าจะเป็นสารประกอบที่มีคุณสมบัติพิเศษ 2 อย่างภายในตนเองคือ สามารถจำลองแบบตนเองและเป็นตัวเร่งปฏิกิริยาเคมีได้

หากทฤษฎีข้างต้นเป็นจริง นั่นหมายความว่า โลกในยุคแรกก่อนที่จะมีสิ่งมีชีวิตอุบัติขึ้นคงจะมี RNA อยู่ในธรรมชาติในปริมาณที่มากพอควร RNA ดังกล่าวมีการพัฒนาทางด้านโครงสร้างจนมีคุณสมบัติที่สามารถจำลองตนเองได้โดยอาศัยการช่วยตัวเองจากคุณสมบัติในการเป็นตัวเร่งปฏิกิริยา มีการเกิด RNA รูปแบบสายใหม่ๆ ที่แตกต่างกันออกไป บางรูปแบบมีความคงทนต่อสภาวะมากกว่า บางรูปแบบมีคุณสมบัติในการจำลองตนเองมากกว่า ก่อให้เกิดความเหลื่อมล้ำและเกิดการคัดเลือกทางโมเลกุล (molecular selection) เพื่อให้ได้รูปแบบโมเลกุลที่เหมาะสมที่สุด ในปี 1986 วอลเตอร์ กิลเบิร์ต (Walter Gilbert-คนที่พัฒนาเทคนิค DNA sequencing) จึงตั้งชื่อยุคนั้นว่าเป็น โลกของ RNA” 




จากทฤษฎีโลกของ RNA การแข่งขันทางเคมีของ RNA คงจะดำเนินต่อไปเรื่อยๆ ร่วมกับสารโมเลกุลอื่นๆ รอบข้างอย่าง DNA และโปรตีน ที่ผุดบังเกิดขึ้นมาในยุคแรกๆ เช่นกัน เมื่อมีวิวัฒนาการเชิงโมเลกุล (molecular evolution) มาถึงจุดที่กรดนิวคลีอิกและโปรตีนมีการประสานประโยชน์ซึ่งกันและกันได้ โดยกรดนิวคลีอิกทำหน้าที่กำหนดโครงสร้างและคุณสมบัติของโปรตีน ในขณะเดียวกันโปรตีนก็มีส่วนช่วยในการเร่งปฏิกิริยาเคมีในการจำลองตัวของกรดนิวคลีอิก จึงทำให้เกิดกฎเกณฑ์ทางธรรมชาติของการทำงานร่วมกันในที่สุด แน่นอนว่าในระหว่างนั้นก็คงมีการเปลี่ยนแปลงบทบาทให้ DNA ซึ่งเป็นโมเลกุลที่ความจุของข้อมูลมากกว่า สลับซับซ้อนกว่าและมีเสถียรภาพมากกว่า เป็นสารพันธุกรรม ขณะที่ RNA ลดบทบาทลงมาเป็นตัวกลางในการถ่ายทอดข้อมูล กลไกการเปลี่ยนแปลงทางธรรมชาติที่เกิดขึ้นนี้ฟังแล้วช่างน่าอัศจรรย์

อย่างไรก็ตาม ถึงแม้ว่าทฤษฎีโลกของ RNA จะฟังดูน่าเชื่อถือและมีเหตุผล แต่ข้อเสียสำคัญคือ นักวิทยาศาสตร์ไม่สามารถทำการทดลองเพื่อพิสูจน์ทฤษฎีได้เลย สุดท้าย เราจึงไม่สามารถสรุปได้ว่า สิ่งมีชีวิตสามารถผุดบังเกิดขึ้นจากความไม่มีชีวิต บนโลกใบนี้ได้หรือไม่?

หลังจากที่หลายๆ คนมึนหัวไปกับหลายๆ ทฤษฎีและการทดลองจากฝั่ง Inevitablilist (เลี่ยงไม่ได้ต้องเกิดขึ้นอย่างแน่นอน) แล้วก็จะนำทุกคนเข้าสู่แนวคิดของอีกฝั่งบ้าง ฝั่ง Improbabilist (ยากที่จะเป็นไปได้) นั่นกล่าวว่า สิ่งมีชีวิตมีกำเนิดมาจากนอกโลก ที่ฟังได้สบายๆ และปวดหัวน้อยกว่า น่าแปลกที่แนวคิดของฝั่งนี้มีทฤษฎี คำอธิบายที่สมเหตุผลน้อยกว่าแต่กลับมีหลักฐานเชิงประจักษ์มากกว่า

การทดลองของฟรานซิสโก วาเรลา (Francisco Valera)

การทดลองของฟรานซิสโก วาเรลา (Francisco Valera)


ฟรานซิสโก วาเรลา (Francisco Valera)

ช่วงต้นศตวรรษ 1970 เป็นช่วงที่ทฤษฎีระบบซับซ้อน (complex system) เพิ่งก่อตัวขึ้น ฟรานซิสโก วาเรลา (Francisco Valera) และคณะประสบความสำเร็จในการใช้โปรแกรมคอมพิวเตอร์ เซลลูล่าร์ ออโตมาตอน” (cellular automaton) จำลองการสร้างตนเองของเซลล์สิ่งมีชีวิตจากโมเลกุลที่มีอยู่ธรรมชาติที่ไม่มีชีวิตโดยนำทฤษฎีระบบซับซ้อนมาประยุกต์ กล่าวอีกนัยหนึ่ง วาเลราได้พิสูจน์ว่าชีวิตสามารถผุดบังเกิดจากสิ่งไม่มีชีวิตได้อย่างไร

องค์ประกอบของ cellular automaton ได้แก่ ตัวเร่งปฏิกิริยา (catalyst) และโมเลกุลของสารอีกชนิดหนึ่งซึ่งเคลื่อนที่ไปมาอย่างสุ่ม โมเลกุลนี้สามารถจับตัวกันเป็นอีกโมเลกุลอีกชนิดหนึ่งได้ นอกจากนี้โมเลกุลที่เกิดขึ้นมาใหม่ยังสามารถต่อเข้าด้วยกันเป็นสายยาวได้ ตามกฎการจำลองการสร้างตัวเองของเซลล์สิ่งมีชีวิตดังนี้

1.การเกิดโมเลกุลชนิดที่สอง
E + O + O -----> X

สารชนิดแรกสองโมเลกุลจับตัวกันเป็นสารชนิดที่สองโดยมี catalyst เร่งปฏิกิริยา

2.การจับตัวกันเป็นสาย
X + X -----> X-X
X-X + X -----> X-X-X

สารชนิดที่สองสามารถเชื่อมต่อกันเป็นสาย ซึ่งมีความยาวไม่จำกัดได้

3.การแยกสาย
X -----> O + O

โมเลกุลของสารชนิดที่สองสามารถย่อยสลายกลับไปเป็นโมเลกุลของสารชนิดแรกได้

4.O สามารถคลื่อนไปยังที่ว่างได้ แต่ไม่สามารถเคลื่อนไปยังตำแหน่งที่มีโมเลกุลอื่นอยู่ได้

5.E และ X สามารถคลื่อนไปแทนที่ O ได้ โดยดันให้ O ไปอยู่ที่ว่างถัดจากตำแหน่งเดิม นอกจากนี้ E ยังแทนที่ X ได้ในลักษณะเดียวกัน

6.E และ X สามารถสลับที่กับ O ได้ กล่าวอีกนัยหนึ่ง E และ X สามารถเคลื่อนที่ผ่าน O ได้

7.เฉพาะ O เท่านั้นที่สามารถผ่านสายของ X ไปยังตำแหน่งที่ว่างทางด้านหลังได้
กฎข้อนี้เป็นการจำลองการที่ผนังเซลล์อนุญาตให้สารบางประเภทเท่านั้นผ่านไปได้ (
semi permeability)

8.X ที่ต่อกันเป็นสายไม่สามารถเคลื่อนที่ได้

การทดลองของวาเรลากำหนดให้โมเลกุลต่างเคลื่อนที่ไปมาแบบสุ่มโดยเริ่มต้นจาก O จำนวนมากที่รอบล้อมด้วยหนึ่งโมเลกุลของ E สิ่งที่น่าสนใจจากการทดลองซ้ำๆ กันหลายครั้งคือ ผนังเซลล์สามารถคงตัวอยู่ได้อย่างมีเสถียรภาพ ผนังบางส่วนอาจถูกย่อยสลายตามกฎข้อที่สาม พร้อมกับมีผนังใหม่ผุดบังเกิดขึ้นมาทดแทนกันตลอดเวลา 



จากการทดลองของวาเรลา แม้ว่าจะพิสูจน์ได้ว่า เซลล์สิ่งมีชีวิตสามารถก่อกำเนิดขึ้นได้เอง แต่ปัญหาก็ยังไม่จบเนื่องจากเรายังค้างคากันที่เหตุการณ์ข้อ 4. ปัญหาต่อไปคือแล้วเซลล์สิ่งมีชีวิตที่เกิดขึ้นส่งต่อสารพันธุกรรมได้อย่างไร ? หากไม่มีการส่งต่อสารพันธุกรรม องค์ประกอบของชีวิตก็ไม่สมบูรณ์

เพื่อขยายความให้ชัดเจน จำเป็นต้องกล่าวถึง central dogma of molecular biology หรือกลไกการส่งต่อข้อมูลพันธุกรรมของสิ่งมีชีวิต กลไกดังกล่าวถูกเสนอโดย ฟรานซิส คริก (Francis Crick) ครั้งที่เขาได้โนเบลจากการพิสูจน์โครงสร้างของ DNA คุณคริกกล่าวว่า การส่งต่อข้อมูลพันธุกรรมของสิ่งมีชีวิตนั้นเป็นไปในทิศทางเดียวจากนิวคลีโอไทด์ไปยังโปรตีน 


ข้อมูลทางพันธุกรรมของสิ่งมีชีวิตทั้งหมดถูกเก็บอยู่ใน DNA-deoxyribonucleic acid หรือกล่าวอีกนัยหนึ่งคือ DNA เป็นสารพันธุกรรมของสิ่งมีชีวิต (ไวรัสบางชนิดอาจมีสารพันธุกรรมเป็น RNA อย่างไรก็ตาม ข้อควรจำอย่างหนึ่งคือไวรัสไม่จัดเป็นสิ่งมีชีวิต) DNA สามารถจำลองตัวเองโดยอาศัยการทำงานของเอ็นไซม์ DNA polymerase (ข้อควรจำคือเอ็นไซม์ก็เป็นโปรตีนชนิดหนึ่ง) ด้วยกระบวนการที่เรียกว่า replication และจาก DNA จะมีการส่งต่อข้อมูลทางพันธุกรรมต่อไปยัง RNA-ribonucleic acid ด้วยกระบวนการที่เรียกว่า transcription สุดท้ายจาก RNA ถอดรหัสเป็นโปรตีนที่มีหน้าที่ทางชีวภาพต่อไปด้วยกระบวนการที่เรียกว่า translation

กระบวนการทั้งหมดเกิดขึ้นเป็นขั้นเป็นตอน สมบูรณ์แบบในตัวเอง ปัญหามันอยู่ตรงนี้นั่น การจำลองตัวเองของสารพันธุกรรมหรือ DNA นั้นต้องอาศัยโปรตีนเร่งปฏิกิริยา ส่วนการสร้างโปรตีนนั้นก็ต้องอาศัยข้อมูลจากสารพันธุกรรม ดังนั้นแล้ว สารอะไรที่เกิดก่อนและสารอะไรที่เกิดทีหลัง (ไก่กับไข่ อะไรเกิดก่อนกัน?) ระหว่างสารที่เป็นข้อมูลพันธุกรรมกับสารที่เป็นตัวเร่งปฏิกิริยา ดังที่พอล เดวีส์ (Paul Devies) นักฟิสิกส์เคยกล่าวไว้ ถ้าทุกสิ่งต่างก็ต้องการสิ่งอื่นๆ แล้วแรกเริ่มเดิมทีชุมชนโมเลกุลเกิดขึ้นมาได้อย่างไร? มันเหมือนกับว่า จู่ๆ ส่วนผสมทั้งหมดในครัวก็มารวมกัน แล้วอบตัวเองให้กลายเป็นเค้ก

เพื่อตอบปัญหาดังกล่าว นักวิทยาศาสตร์จึงจำเป็นต้องตั้งทฤษฎี โลกของ RNA” ขึ้นมาเพื่ออธิบาย

กรณีศึกษาเรื่อง “สารพันธุกรรม (DNA)”

กรณีศึกษาเรื่อง “สารพันธุกรรม (DNA)


สารชีวโมเลกุลที่ประกอบเป็นสิ่งมีชีวิตแม้ในรูปแบบที่ง่ายที่สุดก็ยังมีความซับซ้อนใช่เล่น เซลล์ในรูปแบบพื้นฐานที่สุดมีชั้นกรดไขมันชนิดฟอสโฟลิปิดเรียงตัวสองชั้น (bilayer) เป็นเยื่อหุ้มเซลล์ ภายในบรรจุสารละลายที่ประกอบไปด้วยโปรตีนหลายชนิด โปรตีนเหล่านั้นประกอบด้วยกรดอะมิโนมาเรียงต่อกันเป็นสายยาวเป็นโพลีเป็บไทด์น้ำหนักโมเลกุลหลักพันขึ้นไป ยังไม่รวมถึง สารพันธุกรรม” DNA หรือ deoxyribonucleic acid สารชีวโมเลกุลซับซ้อนที่เรียงตัวต่อกันจากหมื่นหน่วยย่อยขึ้นไป

หากมันเกิดขึ้นจริง นักชีวเคมีพอจะคาดการณ์ได้ว่า น่าจะมีลำดับเหตุการณ์สำคัญๆ (Key steps) ดังนี้ 

1. การสังเคราะห์โมเลกุลเดี่ยว (Abiotic synthesis of monomers เช่น amino acids, nucleotides)

2. การรวมตัวกันของพวกโมเลกุลเดี่ยวเป็นโพลีเมอร์ (Polymerization of monomers เช่น protein, nucleic acids)

3. การรวมกันของพวกโพลีเมอร์แล้วมีคุณสมบัติแตกต่างจากสิ่งแวดล้อมรอบตัว (เช่น membrane selectivity, permeability) และอาจมีการสะสมพลังงานในตัว

4. การเกิดขึ้นของการถ่ายทอดทางพันธุกรรม 

การทดลองของสแตนลีย์ มิลเลอร์ (Stanley Miller)


การทดลองของสแตนลีย์ มิลเลอร์ (Stanley Miller)

สแตนลีย์ มิลเลอร์ (Stanley Miller)

ประเด็นของแนวคิดที่ว่าสิ่งมีชีวิตบังเกิดขึ้นเองบนโลกก็คือ ในเมื่อบนโลกนี้มีวัตถุดิบพร้อมและมีคุณสมบัติเหมาะสมทุกประการที่เอื้อให้สิ่งมีชีวิตดำรงอยู่ได้ ดังนั้นสิ่งมีชีวิตจึงบังเกิดขึ้นเองบนโลกนี้ การทดลองที่มีชื่อเสียงตามแนวคิดนี้คือการทดลองของสแตนลีย์ มิลเลอร์ (Stanley Miller) เมื่อปี ค.ศ. 1953 มิลเลอร์ทำการทดลองโดยนำขวดแก้วสองใบ ใบหนึ่งใส่น้ำเล็กน้อยเปรียบเสมือนมหาสมุทรในยุคดึกดำบรรพ์ อีกใบผสมก๊าซมีเทน แอมโมเนีย ไฮโดรเจนซัลไฟด์ จำลองบรรยากาศโลกยุคดึกดำบรรพ์ นำสายยางเชื่อมต่อทั้งสองขวด แล้วใช้ไฟฟ้าเร่งปฏิกิริยา สิ่งที่ได้คือสารอินทรีย์ง่ายๆ เช่น กรดอะมิโน กรดไขมัน น้ำตาล การทดลองดังกล่าวพอสรุปได้ว่า สารเคมีที่เป็นพื้นฐานของสิ่งมีชีวิตสามารถบังเกิดขึ้นเองได้ภายใต้บรรยากาศโลกยุคดึกดำบรรพ์

การทดลองของสแตนลีย์ มิลเลอร์ (Stanley Miller)

อย่างไรก็ตาม ผ่านมากว่าครึ่งศตวรรษจากการทดลองของมิลเลอร์ ก็ยังไม่สามารถสรุปว่าสิ่งมีชีวิตสามารถผุดบังเกิดได้เองในโลกนี้ได้จริงหรือไม่ เพราะสารอินทรีย์ที่เกิดขึ้นในขวดแก้วของมิลเลอร์นั้นเรียบง่าย และห่างไกลจากคำว่า สิ่งมีชีวิต” การทดลองของเขาจัดอยู่ในกลุ่ม Inevitablilist (เลี่ยงไม่ได้ต้องเกิดขึ้นอย่างแน่นอน) กลุ่มนี้เป็นพวกที่มีทฤษฎีหนาแน่นแต่ขาดซึ่งหลักฐาน .